Силы действующие на самолет презентация. Почему летают самолёты. Подъемная сила крыла

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Cлайд 1

Проект по физике на тему: Выполнил: Попов Руслан, ученик 10 «А» класса НОУ «Средняя общеобразовательная школа№38 ОАО «РЖД» Учитель: Валовень С. А. г. Мичуринск, 2008г

Cлайд 2

Cлайд 3

Cлайд 4

Подъёмная сила крыла (обозначим её F) возникает благодаря тому, что поперечное сечение крыла представляет собой чаще всего несимметричный профиль с более выпуклой верхней частью. Крыло самолёта или планера, перемещаясь, рассекает воздух. Одна часть струек встречного потока воздуха пойдёт под крылом, другая – над ним. F меню далее выход

Cлайд 5

У крыла верхняя часть более выпуклая, чем нижняя, следовательно, верхним струйкам придётся пройти больший путь, чем нижним. Однако количество воздуха, набегающего на крыло и стекающего с него, одинаково. Значит, верхние струйки, чтобы не отставать от нижних, должны двигаться быстрей. Давление под крылом больше, чем над крылом. Эта разность давлений и создаёт аэродинамическую силу R, одной из составляющих которой является подъёмная сила F. меню далее выход

Cлайд 6

Подъёмная сила крыла тем больше, чем больше угол атаки, кривизна профиля, площадь крыла, плотность воздуха и скорость полёта, причём от скорости подъёмная сила зависит в квадрате. Угол атаки должен быть меньше критического значения, при повышении которого подъёмная сила падает. меню далее выход α

Cлайд 7

Развивая подъёмную силу, крыло всегда испытывает и лобовое сопротивление X направленное против движения и, значит, тормозит его. Подъёмная сила перпендикулярна набегающему потоку. Сила R называется полной аэродинамической силой крыла. Точку приложения аэродинамической силы называют центром давления крыла (ЦД). меню далее выход

Cлайд 8

F = CF 2/2 S – формула для расчёта подъёмной силы, где: F - подъёмная сила крыла, СF – коэффициент подъёмной силы, S – площадь крыла. R = CR 2/2 S – формула для расчёта аэродинамической силы, где: CR – коэффициент аэродинамической силы. S – площадь крыла. меню выход

Cлайд 9

Подъёмная сила летательного аппарата, уравновешивая его вес, даёт возможность осуществлять полёт, лобовое же сопротивление тормозит его движение. Лобовое сопротивление преодолевается силой тяги, развиваемой силовой установкой. Силовая установка самолёту нужна для развития подъёмной силы и для перемещения в пространстве. Чем больше скорость, тем больше подъёмная сила. На современных самолётах крылья делают стреловидной конструкции для того, чтобы крыло не разрушалось в полёте от лобового сопротивления. меню далее выход

Cлайд 10

Конструкция авиационных двигателей со временем изменялась. Существуют три основных типа авиационных двигателей: 1. поршневой, 2. турбовинтовой, 3. реактивный. Все эти двигатели различаются по скоростным и тяговым показателям. Реактивный двигатель более совершенен. Современные боевые самолёты с таким типом двигателей превосходят скорость звука в несколько раз. меню далее выход

Cлайд 11

(1847 -1921) Великий русский учёный, основоположник современной гидро- и аэромеханики, «отец русской авиации». Жуковский родился в семье инженера путей сообщения. В 1858 поступил в 4-ю московскую мужскую классическую гимназию и в 1864 окончил её. В этом же году поступил в Московский университет на физико-математический факультет, который окончил в 1868 году по специальности «прикладная математика». В 1882 году Жуковскому была присуждена ученая степень доктора прикладной математики. меню далее выход

Cлайд 12

С начала 20 века основное внимание Жуковского было направленно на разработку вопросов аэродинамики и авиации. В 1904 году под его руководством в посёлке Кучине, под Москвой, был построен первый в Европе аэродинамический институт. Огромную работу провёл Жуковский по подготовке авиационных кадров - конструкторов самолётов и пилотов. Одним из наиболее ярких очагов зарождавшейся отечественной авиационной науки стал кружок воздухоплавания, организованный Н.Е. Жуковским при Московском техническом училище. Именно здесь начинали свой творческий путь ставшие всемирно известными авиационные конструкторы и учёные: А.С. Туполев, В.П. Ветчинскин, Б.Н.Юрьев, Б.С.Стечкин, А.А. Архангельский и многие другие. меню далее выход

Cлайд 13

В 1904 году в Кучинской лаборатории Жуковский сделал замечательное открытие, послужившее основой всего дальнейшего развития современной аэродинамики и её приложение к теории авиации. Жуковский не работал, только когда спал. За свою жизнь он ни разу не летал на самолёте. В связи с первыми успехами авиации перед учёным возникла задача - выяснить источник происхождения подъёмной силы, возможности её увеличения, найти математический метод ее расчёта. 15 ноября 1905 года Жуковский дал формулу для определения подъёмной силы, являющейся основой всех аэродинамических расчётов самолета. меню далее выход 1. Ермаков А. М. «Простейшие авиамодели», 1989 2. Конспекты Кирсановского авиационного технического училища гражданской авиации, 1988 3. БСЭ под ред. Введенского Б. А., т.16 4. Интернет-ресурсы: http://media.aplus.by/page/42/ http://sfw.org.ua/index.php?cstart=502& http://www.atrava.ru/08d36bff22e97282f9199fb5069b7547/news/22/news-17903 http://www.airwar.ru/other/article/engines.html http://arier.narod.ru/avicos/l-korolev.htm http://kto-kto.narod.ru/bl-bl-3/katanie.html http://www.library.cpilot.info/memo/beregovoy_gt/index.htm http://vivovoco.ibmh.msk.su/VV/PAPERS/HISTORY/SIMBIRSK/SIMBIRSK.HTM выход меню

Рассмотрим теперь обтекание потоком воздуха крыла самолета. Опыт показывает, что, когда крыло помещено в поток воздуха, вблизи острой задней кромки крыла возникают вихри, вращающиеся в случае, изображенном на рис. 345, против часовой стрелки. Вихри эти растут, отрываются от крыла и уносятся потоком. Остальная масса воздуха вблизи крыла получает при этом противоположное вращение (по часовой стрелке), образуя циркуляцию около крыла (рис. 346). Накладываясь на общий поток, циркуляция обусловливает распределение линий тока, изображенное на рис. 347.

Рис. 345. У острого края профиля крыла образуется вихрь

Рис. 346. При образовании вихря возникает циркуляция воздуха вокруг крыла

Рис. 347. Вихрь унесен потоком, а линии тока плавно обтекают профиль; они сгущены над крылом и разрежены под крылом

Мы получили для профиля крыла такую же картину обтекания, как и для вращающегося цилиндра. И здесь на общий поток воздуха наложено вращение вокруг крыла - циркуляция. Только, в отличие от вращающегося цилиндра, здесь циркуляция возникает не в результате вращения тела, а благодаря возникновению вихрей вблизи острого края крыла. Циркуляция ускоряет движение воздуха над крылом и замедляет его под крылом. Вследствие этого над крылом давление понижается, а под крылом повышается. Равнодействующая всех сил, действующих со стороны потока на крыло (включая силы трения), направлена вверх и немного отклонена назад (рис. 341). Ее составляющая, перпендикулярная к потоку, представляет собой подъемную силу а составляющая в направлении потока - силу лобового сопротивления . Чем больше скорость набегающего потока, тем больше и подъемная сила и сила лобового сопротивления. Эти силы зависят, кроме того, и от формы профиля крыла, и от угла, под которым поток набегает на крыло (угол атаки), а также от плотности набегающего потока: чем больше плотность, тем больше и эти силы. Профиль крыла выбирают так, чтобы оно давало возможно большую подъемную силу при возможно меньшем лобовом сопротивлении. Теория возникновения подъемной силы крыла при обтекании потоком воздуха была дана основоположником теории авиации, основателем русской школы аэро - и гидродинамики Николаем Егоровичем Жуковским (1847-1921).

Теперь мы можем объяснить, как летает самолет. Воздушный винт самолета, вращаемый двигателем, или реакция струи реактивного двигателя, сообщает самолету такую скорость, что подъемная сила крыла достигает веса самолета и даже превосходит его. Тогда самолет взлетает. При равномерном прямолинейном полете сумма всех сил, действующих на самолет, равна нулю, как и должно быть согласно первому закону Ньютона. На рис. 348 изображены силы, действующие на самолет при горизонтальном полете с постоянной скоростью. Сила тяги двигателя равна по модулю и противоположна по направлению силе лобового сопротивления воздуха для всего самолета, а сила тяжести равна по модулю и противоположна по направлению подъемной силе .

Рис. 348. Силы, действующие на самолет при горизонтальном равномерном полете

Самолеты, рассчитанные на полет с различной скоростью, имеют различные размеры крыльев. Медленно летящие транспортные самолеты должны иметь большую площадь крыльев, так как при малой скорости подъемная сила, приходящаяся на единицу площади крыла, невелика. Скоростные же самолеты получают достаточную подъемную силу и от крыльев малой площади. Так как подъемная сила крыла уменьшается при уменьшении плотности воздуха, то для полета на большой высоте самолет должен двигаться с большей скоростью, чем вблизи земли.

Подъемная сила возникает и в том случае, когда крыло движется в воде. Это дает возможность строить суда, движущиеся на подводных крыльях. Корпус таких судов во время движения выходит из воды (рис. 349). Это уменьшает сопротивление воды движению судна и позволяет достичь большой скорости хода. Так как плотность воды во много раз больше, чем плотность воздуха, то можно получить достаточную подъемную силу подводного крыла при сравнительно малой его площади и умеренной скорости.

Рис. 349. Судно на подводных крыльях

Назначение самолетного винта - это придание самолету большой скорости, при которой крыло создает подъемную силу, уравновешивающую вес самолета. С этой целью винт самолета укрепляют на горизонтальной оси. Существует тип летательных аппаратов тяжелее воздуха, для которого крылья не нужны. Это - вертолеты (рис. 350).

Рис. 350. Схема вертолета

В вертолетах ось воздушного винта расположена вертикально и винт создает тягу, направленную вверх, которая и уравновешивает вес вертолета, заменяя подъемную силу крыла. Винт вертолета создает вертикальную тягу независимо от того, движется вертолет или нет. Поэтому при работе воздушных винтов вертолет может неподвижно висеть в воздухе или подниматься по вертикали. Для горизонтального перемещения вертолета необходимо создать тягу, направленную горизонтально. Для этого не нужно устанавливать специальный винт с горизонтальной осью, а достаточно только несколько изменить наклон лопастей вертикального винта, что выполняется при помощи специального механизма во втулке винта.

Современный самолет – это сложнейшее сооружение, состоящее из сотен тысяч деталей, электронно-вычислительных устройств. Полетная масса самолетов достигает нескольких сотен тонн. Как же возникает подъемная сила, удерживающая самолет в воздухе?

Со стороны атмосферы на крылья и корпус самолета действуют огромные силы давления. К примеру, площадь нижней поверхности крыла современного пассажирского самолета Ил-62 равна 240 м 2 , а вместе с поверхностью стабилизаторов достигает 280 м 2 . Атмосферное давление равно 10 5 Па, поэтому на крылья воздух действует с силой 2,8×10 7 Н. Эта сила в 18 раз превышает вес самолета с пассажирами (полетный вес самолета Ил-62 равен 1,54×10 6 Н).

Для возникновения подъемной силы давление воздуха на нижнюю поверхность крыла должно быть больше, чем на верхнюю.

Такое перераспределение давления обычно происходит при обтекании крыла воздушным потоком. Рассчитаем избыточное давление, необходимое для того, чтобы возникла подъемная сила, равная силе тяжести, действующей на самолет Ил-62:

Это избыточное давление составляет примерно 0,05 от нормального атмосферного давления. Пример показывает, что для взлета самолета достаточно создать небольшое избыточное давление. Как же оно возникает?

Когда воздушный поток начинает обтекать крыло, то из-за действия сил трения у задней кромки крыла образуется вихрь, в котором воздух вращается против часовой стрелки, если крыло движется влево (рис. 2.3.). Но по законам механики при возникновении вращения против часовой стенки должно возникнуть вращение по часовой стрелке (это следует из закона сохранения момента импульса, который гласит, что в замкнутой системе тел полный (суммарный) импульс остается постоянным). Такое вращение воздуха и возникает вокруг крыла. На обтекающий крыло поток накладывается циркуляция воздуха вокруг крыла. В результате скорость воздушного потока над крылом оказывается больше, чем под крылом, так как над крылом скорость циркуляции имеет такое же направление, как и скорость набегающего на крыло потока, а под крылом эти скорости противоположны по направлению. Но согласно закону Бернулли давление должно быть больше там, где скорость меньше. Следовательно, под крылом давление больше, чем над ним. Из-за этого и возникает подъемная сила.

Можно приближенно оценить, от чего зависит перепад давлений вокруг крыла. Если самолет движется со скоростью относительно воздуха, то в системе координат, связанной с самолетом, крыло неподвижно, а на него набегает воздушный поток с такой же по модулю скоростью. Обозначим модуль скорости циркулирующего воздуха через u . Тогда модуль скорости воздуха над крылом будет равен v 1 = v + u , а под крылом v 2 = v u . Запишем закон Бернулли:



p 1 + = p 2 + .

Dp = p 2 – p 1 = r( - ) = 2 rvu.

В нижних слоях атмосферы, где плотность воздуха больше, достаточная подъемная сила может возникнуть и при малых скоростях движения самолета . На больших высотах плотность воздуха уменьшается, но там могут быть развиты значительные скорости, и за счет этого будет возникать необходимая подъемная сила.

Скорость самолета Ил–62 равна 900 км/ч, а на тех высотах, где он летает, плотность воздуха порядка 1кг/м 3 . Поэтому при скорости циркуляции порядка 10 м/с возникает необходимый для полета перепад давлений:

Dp= Па = 5×10 3 Па.

Закон Бернулли дает возможность понять, почему возникает подъемная сила у крыла самолета. Скорость обтекания воздухом верхней кромки крыла больше, чем нижней. Поэтому давление воздуха на нижнюю кромку крыла больше, чем на верхнюю.


Вопросы для повторения: Какие опыты поставили, чтобы показать роль сил поверхностного натяжения в дыхании? Почему постоянный синтез сурфоктантов помогает нам дышать, и что происходит, когда он прекращается? Почему аквалангисты должны дышать под водой сжатым воздухом? Почему при спуске на большие глубины водолазы не могут использовать сжатый воздух, а должны приготовлять специальные дыхательные смеси? Что такое кессонная болезнь и как её избежать?










Сила сопротивления воздушному потоку Сила сопротивления пропорциональна числу молекул воздуха, которых останавливает крыло, их массе и скорости F сопр поперечное (лобовое) сечение крыла в направлении движения где - плотность воздуха, V - скорость самолёта, а S - площадь его крыла угол атаки


Сила сопротивления изменение импульса воздуха Подъёмная сила воздушного потока mV0mV0 mV1mV1 Подъёмная сила пропорциональна числу молекул воздуха, которых поворачивает крыло, их массе и скорости где - плотность воздуха, V - скорость самолёта, а S - площадь его крыла


















Зависимость скорости самолёта от его массы При неизменной мощности двигателя, чем больше масса самолёта, тем медленнее он летит При неизменной скорости и аэродинамических качествах, т.е. С под /С сопр = const, грузоподъёмность пропорциональна площади крыльев


Есть ли связь между посещаемостью и успеваемостью? посещаемость, % результаты зачёта Как количественно определить, тесно ли связано изменение двух величин?


Посещаемость, % результаты зачёта Как количественно определить, тесно ли связано изменение двух величин? Есть ли связь между посещаемостью и успеваемостью?


Вычисляем коэффициент корреляции (связи), CORR, между успеваемостью и посещаемостью посещаемость, % результаты зачёта средняя посещаемость АБ ВГ средняя успеваемость CORR(10 «Б») = 0

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Предпроектное обследование объекта автоматизации Возможное уменьшение стоимости внедрения Предпроектное обследование объекта автоматизации Возможное уменьшение стоимости внедрения Сколько зарабатывает фармацевт? Сколько зарабатывает фармацевт? Классификация факторов в анализе хозяйственной деятельности - анализ хозяйственной деятельности предприятия Классификация факторов в анализе хозяйственной деятельности - анализ хозяйственной деятельности предприятия